SAVE Premium Login NEW Print Share Search Marksheet Startup Guide

Tip:

 

Intro

Friends (click here to change title)

type here type here type here type here type here type here

Advertisement
Want adverts removed?
Join ClassTools Premium!

 

 

Add a post!

(TIP 1: You can add hyperlinks and links to YouTube/Vimeo videos too!)
(TIP 2: You can click on any image that appears to change it!)

Name Date

Add to your post

Post

 

 

 

 

 

 

 

 

 

 

 

PREMIUM LOGIN

ClassTools Premium membership gives access to all templates, no advertisements, personal branding and other benefits!

Username:    
Password:    
Submit Cancel

 

Not a member? JOIN NOW!  
Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest halogen and is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig (in 1825) and Antoine Jérôme Balard (in 1826), its name was derived from the Ancient Greek βρῶμος (meaning "stench"), referring to its sharp and pungent smell. Elemental bromine is very reactive and thus does not occur free in nature, but in colourless soluble crystalline mineral halide salts, analogous to table salt. While it is rather rare in the Earth's crust, the high solubility of the bromide ion (Br−) has caused its accumulation in the oceans. Commercially the element is easily extracted from brine evaporation ponds, mostly in the United States, Israel, and China. The mass of bromine in the oceans is about one three-hundredth that of chlorine. At standard conditions for temperature and pressure it is a liquid; the only other element that is liquid under these conditions is mercury. At high temperatures, organobromine compounds readily dissociate to yield free bromine atoms, a process that stops free radical chemical chain reactions. This effect makes organobromine compounds useful as fire retardants, and more than half the bromine produced worldwide each year is put to this purpose. The same property causes ultraviolet sunlight to dissociate volatile organobromine compounds in the atmosphere to yield free bromine atoms, causing ozone depletion. As a result, many organobromine compounds—such as the pesticide methyl bromide—are no longer used. Bromine compounds are still used in well drilling fluids, in photographic film, and as an intermediate in the manufacture of organic chemicals. Large amounts of bromide salts are toxic from the action of soluble bromide ions, causing bromism. However, a clear biological role for bromide ions and hypobromous acid has recently been elucidated, and it now appears that bromine is an essential trace element in humans. The role of biological organobromine compounds in sea life such as algae has been known for much longer. As a pharmaceutical, the simple bromide ion (Br−) has inhibitory effects on the central nervous system, and bromide salts were once a major medical sedative, before replacement by shorter-acting drugs. They retain niche uses as antiepileptics.